Neuropeptide neurotensin stimulates intestinal wound healing following chronic intestinal inflammation.
نویسندگان
چکیده
Because neurotensin (NT) and its high-affinity receptor (NTR1) modulate immune responses, chloride secretion, and epithelial cell proliferation, we sought to investigate their role in the repair process that follows the development of mucosal injuries during a persistent inflammation. Colonic NT and NTR1, mRNA, and protein significantly increased only after dextran sodium sulfate (DSS)-induced inflammatory damage developed. Colitis-induced body weight loss, colonic myeloperoxidase activity, and histological damage were significantly enhanced by SR-48642 administration, a nonpeptide NTR1 antagonist, whereas continuous NT infusion ameliorated colitis outcome. To evaluate the NT and NTR1 role in tissue healing, mucosal inflammatory injury was established administering 3% DSS for 5 days. After DSS discontinuation, mice rapidly gained weight, ulcers were healed, and colonic NT, NTR1, and cyclooxygenase (COX)-2 mRNA levels were upregulated, whereas SR-48642 treatment caused a further body weight loss, ulcer enlargement, and a blunted colonic COX-2 mRNA upregulation. In a wound-healing model in vitro, NT-induced cell migration in the denuded area was inhibited by indomethacin but not by an antitransforming growth factor-beta neutralizing antibody. Furthermore, NT significantly increased COX-2 mRNA levels by 2.4-fold and stimulated PGE(2) release in HT-29 cells. These findings suggest that NT and NTR1 are part of the network activated after mucosal injuries and that NT stimulates epithelial restitution at least, in part, through a COX-2 dependent pathway.
منابع مشابه
Neurotensin is a proinflammatory neuropeptide in colonic inflammation.
The neuropeptide neurotensin mediates several intestinal functions, including chloride secretion, motility, and cellular growth. However, whether this peptide participates in intestinal inflammation is not known. Toxin A, an enterotoxin from Clostridium difficile, mediates pseudomembranous colitis in humans. In animal models, toxin A causes an acute inflammatory response characterized by activa...
متن کاملInsulin-like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells.
Neurotensin (NT) is a gastrointestinal neuropeptide that modulates intestinal inflammation and healing by binding to its high-affinity receptor NTR1. The dual role of NT in inflammation and healing is demonstrated in models of colitis induced by Clostridium difficile toxin A and dextran sulfate sodium, respectively, and involves NF-κB-dependent IL-8 expression and EGF receptor-mediated MAPK act...
متن کاملANGPTL2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis
The intestinal epithelium continually self-renews and can rapidly regenerate after damage. Dysregulation of intestinal epithelial homeostasis leads to severe inflammatory bowel disease. Additionally, aberrant signaling by the secreted protein angiopoietin-like protein 2 (ANGPTL2) causes chronic inflammation in a variety of diseases. However, little is known about the physiologic role of ANGPTL2...
متن کاملIL-6 Stimulates Intestinal Epithelial Proliferation and Repair after Injury
IL-6 is a pleiotropic cytokine often associated with inflammation. Inhibition of this pathway has led to successful treatment of rheumatoid arthritis, but one unforeseen potential complication of anti-IL-6 therapy is bowel perforation. Within the intestine, IL-6 has been shown to prevent epithelial apoptosis during prolonged inflammation. The role of IL-6 in the intestine during an initial infl...
متن کاملRole of neuropeptides in inflammatory bowel disease.
Inflammatory bowel disease (IBD) is a chronic, relapsing condition involving complex interactions between genes and the environment. The mechanisms triggering the initial attack and relapses, however, are not well understood. In the past several years the enteric nervous system (ENS) has been implicated in the pathophysiology of IBD. Both the ENS and the central nervous system (CNS) can amplify...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 288 4 شماره
صفحات -
تاریخ انتشار 2005